快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以
递归
进行,以此达到整个数据变成有序
序列
。
假设用户输入了如下数组:
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
6
|
2
|
7
|
3
|
8
|
9
|
创建变量i=0(指向第一个数据), j=5(指向最后一个数据), k=6(
赋值为第一个数据的值)。
我们要把所有比k小的数移动到k的左面,所以我们可以开始寻找比6小的数,从j开始,从右往左找,不断递减变量j的值,我们找到第一个下标3的数据比6小,于是把数据3移到下标0的位置,把下标0的数据6移到下标3,完成第一次比较:
下标
|
0
|
1
|
2
| 3 |
4
|
5
|
数据
|
3
|
2
|
7
|
6
|
8
|
9
|
i=0 j=3 k=6
接着,开始第二次比较,这次要变成找比k大的了,而且要从前往后找了。递加变量i,发现下标2的数据是第一个比k大的,于是用下标2的数据7和j指向的下标3的数据的6做交换,数据状态变成下表:
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
3
|
2
|
6
|
7
|
8
|
9
|
i=2 j=3 k=6
称上面两次比较为一个循环。
接着,再递减变量j,不断重复进行上面的循环比较。
在本例中,我们进行一次循环,就发现i和j“碰头”了:他们都指向了下标2。于是,第一遍比较结束。得到结果如下,凡是k(=6)左边的数都比它小,凡是k右边的数都比它大:
下标
|
0
|
1
|
2
|
3
|
4
|
5
|
数据
|
3
|
2
|
6
|
7
|
8
|
9
|
如果i和j没有碰头的话,就递加i找大的,还没有,就再递减j找小的,如此反复,不断循环。注意判断和寻找是同时进行的。
然后,对k两边的数据,再分组分别进行上述的过程,直到不能再分组为止。
注意:第一遍快速排序不会直接得到最终结果,只会把比k大和比k小的数分到k的两边。为了得到最后结果,需要再次对下标2两边的数组分别执行此步骤,然后再分解数组,直到数组不能再分解为止(只有一个数据),才能得到正确结果。
public class Test{
public static void quickSort(String[] strDate, int left, int right) {
String middle, tempDate;
int i, j;
i = left;
j = right;
middle = strDate[(i + j) / 2];
do {
while (strDate[i].compareTo(middle) < 0 && i < right) i++; //找出左边比中间值大的数
while (strDate[j].compareTo(middle) > 0 && j > left) j--; //找出右边比中间值小的数
if (i <= j) { //将左边大的数和右边小的数进行替换
tempDate = strDate[i];
strDate[i] = strDate[j];
strDate[j] = tempDate;
i++;
j--;
}
} while (i <= j); //当两者交错时停止
if (i < right) {
quickSort(strDate, i, right); //从
}
if (j > left) {
quickSort(strDate, left, j);
}
}
public static void main(String[] args) {
String[] str=new String[]{"11","66","22","0","55","22","0","32"};
quickSort(str,0,str.length-1);
for (String s : str) {
System.out.print(s+",");
}
}
}